
FINAL REPORT 
 

HOS/VA Comparison Project 

Part 1. Measurement Equivalence of Medicare HOS SF-36 & VA 
Veterans SF-36 

 
Avron Spiro III, Austin F. Lee, Lewis E. Kazis,  

Donald R. Miller, Xinhua S. Ren, Milanda Zhang 
 

Boston University School of Public Health 

CONTENTS 
            Page 
0.  Abstract              1 
1. Samples              2 

• HOS Cohort 1            2 
• 1999 National Survey of Veterans Health        3 
• Differences between HOS and VA samples        3 

2. Measures              3 
• Mode of administration              3 
• SF-36                 4 
• Demographics               4 
• Comorbidities               4 

3. Analytic method             4 
• Conceptual issues and notation          5 
• Testing degrees of equivalence          6 
• Estimation                8 
• Identification                  8 
• Model fit                8 

4. Descriptive Findings            9 
• Age distribution            9 
• Demographics           10 
• Comorbidities           10 
• SF-36 item statistics         10 

5. Measurement equivalence         12 
6. Discussion and Future Plans         16 
7. References            17 
8. Acronyms             19 
9. Appendices 

I. 1998 HOS Survey 
II. 1999 VA National Survey of Veterans Health 
III. Item distributions by sample and gender 
IV. Input data matrices for LISREL 
V. Example LISREL scripts 



VI. Results of equivalence  models by gender 

 1



The  Centers  for  Medicare  &  Medicaid  Services'  Office  of  Research,  Development, and 
Information  (ORDI)  strives  to  make  information  available  to  all.  Nevertheless, portions 
of  our  files  including  charts,  tables,  and  graphics  may  be  difficult to read using 
assistive technology.   
   
Persons  with  disabilities  experiencing  problems  accessing  portions  of  any  file 
should contact  ORDI  through  e-mail  at ORDI_508_Compliance@cms.hhs.gov 

 

mailto:ORDI_508_Compliance@cms.hhs.gov


Part 1. Measurement Equivalence of Medicare HOS SF-36 & VA Veterans SF-36 

0. ABSTRACT 
 
Objective:  Determine whether the versions of the SF-36 administered in the Health Outcomes 
Survey (HOS) and Department of Veterans Affairs 1999 National Survey of Veterans Health 
(VA99) are comparable. There are some notable differences (see below) in the versions of the 
SF-36 used and in the populations sampled. 
 
Methodology:  Compare factor structure of SF-36 between samples from Medicare’s Health 
Outcomes Survey and VA’s 1999 National Survey of Veterans Health, to assess measurement 
equivalence.  Multiple-group confirmatory factor analysis was used to test a sequence of nested 
hypotheses representing varying degrees of equivalence.  Samples included adults aged 65 and 
older, 167,092 from Cohort 1 of Medicare HOS, and 477,477 from the 1999 VA survey. 
Analyses were conducted separately for men and women. 
 
Results: Because of differences between HOS and VA in gender and age distributions, separate 
analyses were conducted for men and women. There were notable differences between HOS and 
VA samples, with HOS being older on average, having more women, and more non-white 
women. The VA participants reported more medical conditions.  
 
Measurement equivalence analyses were conducted using multiple-groups factor analysis to 
compare the SF-36 between the HOS and VA samples, separately for men and women. The 
results of an extensive series of analyses suggested that, for both men and women, the best-
fitting model is one that specified equivalence of factor loadings between HOS and VA on 6 of 8 
factors. Because of differences in the response format of RP and RE items between HOS and VA 
versions of the SF-36, we did not constrain loadings on these items to equality across samples. 
The analyses also suggested that imposing further degrees of equivalence between HOS and VA 
was not appropriate, e.g., the intercepts and unique variances differed significantly between HOS 
and VA men and women. 
 
Conclusions:  The degree of measurement equivalence found, that of partial metric equivalence 
(i.e., equal factor loadings on 6 of 8 scales, excepting RP and RE), suggests that SF-36 scales can 
be computed and compared between HOS and VA. Although other aspects of the SF-36 differ 
between the two samples, for example, unique variances and factor covariances, the 
establishment of partial metric equivalence indicates that quantitative comparisons between these 
two samples are appropriate. 
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Measurement Equivalence of Medicare HOS SF-36 & VA Veterans SF-36 
 
 The SF-36 was developed as a brief self-report measure of health status. It can be used to 
assess outcomes in clinical trials, monitor quality of care in medical practice and response to 
treatment or intervention, compare the inputs and outputs of different medical systems, 
characterize or compare the health of populations, or examine changes within a population over 
time. The latter two uses are relevant for the present project, which is to assess the equivalence 
of the SF-36 across two healthcare systems, to determine whether it can be used to compare 
change in these systems over time. 
 
 However, before such questions can be addressed, we must first establish the equivalence of 
the instrument across those systems. That is, do SF-36 items relate to scales in the same manner 
across patients in different health care systems?  If they do, then comparisons can be conducted 
across systems; if the relations of items to factors differ among groups, then comparisons of 
groups are misleading at best. 
 
 The goal of this project is to examine the extent of measurement equivalence (Byrne et al., 
1989; Meredith & Horn, 2001; Widaman & Reise, 1997) between two versions of the SF-36, the 
version administered in the Medicare Health Outcomes Survey (based on the MOS SF-36), and 
the Veterans SF-36 (Kazis et al., 1998, 2002) developed and administered in the Veterans Health 
Administration, US Department of Veterans Affairs. These versions of the SF-36 have been 
adopted by their respective Federal Agencies to assess the outcomes of health care.  
 
 However, recipients of VA healthcare are likely to differ in important ways from those 
enrolled in Medicare HMO programs. Persons in the two healthcare systems are not likely to be 
random samples from the same population. For example, we have reason to expect important 
differences in the age and sex structure of the two systems, and to expect that the health of VA 
patients is worse than that of Medicare HMO enrollees (e.g., Agha et al., 2000; Kazis et al., 
1998; Peabody et al., 1998; Petersen et al., 2000; Rogers et al., 2002). 
 
 Given this, it becomes important to know whether health status can be compared across those 
who use the health care provided by these agencies. Thus, in this paper, we describe the use of 
multi-group confirmatory factor analysis (Joreskog, 1971) to examine the extent to which the 
two versions of the SF-36 are comparable across systems, using data from the Medicare 1998 
Health Outcomes Survey and from the VA 1999 National Survey of Veterans Health. 

1. Samples 

1.1.  HOS Cohort 1 
  
 The HOS was first fielded in May 1998 as part of HEDIS 3.0 by the National Committee on 
Quality Assurance (NCQA)/CMS. Simple random samples of 1,000 beneficiaries who had been 
enrolled for at least 6 months (and were not ESRD patients) were selected from each of 268 
plans in 287 market areas. (For plans with fewer than 1000 members, all eligible members were 
selected). 
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 Potential respondents were mailed a pre-notification letter, followed 1 week later by a 
survey. A reminder was mailed 2 weeks later, followed by a second copy of the survey 2 weeks 
after that. After a second reminder, a number of attempts were made to contact the potential 
respondent by phone. 
 
 The sample for Cohort 1 was 279,135 persons, of whom 167,092 (60%) provided completed 
surveys.  Of these, we included 166,104 whom we deemed "valid" cases (i.e., survey disposition 
= M/T 10/11; did not have a marker variable for invalid survey (i.e., invsrv=0); and were age 65 
and older. Of this sample, 42.5% (n=70,610) were men; 57.5% (n=95,494) women.   

1.2. 1999 National Survey of Veterans Health  
 The 1999 VA data were obtained from a stratified random sample of 3,421,388 VA enrollees 
(based on the VA enrollment file) as of 1999.  Of those enrolled, 1,406,049 were sampled; 887,775 
(63.14%) completed the survey. 
 
 Data collection took place between July 1999 and January 2000. A modified Total Design 
Methodology (TDM) approach developed by Dillman was used. This approach is based upon 
rewarding the respondent, establishing trust and reducing respondent costs. It uses four carefully 
spaced mailings: (1) a pre-notification letter, (2) cover letter and Veterans SF-36 questionnaire, 
(3) reminder post card, and (4) second wave of questionnaire mailings to the non-respondents of 
the first wave mailings. All occurred over 12 weeks, with a 14 week follow-up period for 
questionnaire receipts. 
  
 Information on all 1.4 million sampled enrollees was obtained from VA administrative data 
(i.e., Patient Treatment and Outpatient Files) to provide socio-demographic characteristics and 
other administrative data (e.g., Service Connected Disability Status). ICD-9-CM codes for 
diagnoses were also obtained from these files. Individual identifiers were subsequently stripped 
to maintain confidentiality. The ICD-9-CM diagnoses were linked to medical and mental 
conditions based on literature review and a consensus panel of clinicians. 
 
 Of the respondents to the VA survey, 477,477 (53.8%) were aged 65 and over.  Because the 
VA is a health care system for veterans, the vast majority (93.4%) were men (n=445,816); only 
6.6% (n=9329) were women.   

1.3. Differences between HOS and VA samples 
 Because of the difference between the Medicare HOS sample and the VA for the proportion 
of women (57.5% in HOS; 6.6% in VA), all analyses have been stratified by sex.  Thus, in the 
analyses below, we compare HOS to VA, separately for men and for women.  

2. Measures 

2.1.  Mode of Administration 
  
 There were some differences in mode of administration between samples.  The HOS version 
was administered by mail or by phone; the VA version was administered by only mail. The VA 
version was administered in both English and Spanish versions; the HOS only in English.  
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 The timing of survey administration also differed; the VA survey was fielded July 1999 to 
January 2000; in the HOS, Cohort 1 was fielded May 1998 (and Cohort 2 in March 1999, Cohort 
3 in April 2000).  It is also important to note that the VA survey was a one-time cross-sectional 
survey; in the HOS, participants are surveyed again 2 years later (if they are still enrolled in the 
same health plan).  

2.2. SF-36  
   
 As the SF-36 is well documented in the literature, we have not detailed the content of the 
MOS SF-36 and the Veterans SF-36 other than to highlight the differences between the two 
versions. There are several important differences in the versions of the SF-36 used in the HOS 
(Appendix I) and the VA (Appendix II).  In particular, the VA administered the (Veterans SF-36; 
Kazis et al., 1998) which differs from the HOS SF-36 (NCQA, 1998) in two respects.  The 
Veterans SF-36 uses 5-point response choices for the 4 RP (role limitations due to physical 
problems), and 3 RE (role limitations due to emotional problems) items from ‘no, none of the 
time to yes, all of the time’, and has two (rather than 1) health transition items, one for physical 
and one for emotional health. (The latter difference is not relevant for the present comparison, 
because the health transition items are not used in scoring the SF-36).  
 
 The other differences are in the order of presentation of items between the two studies.  In 
both, the SF-36 items were the first ones presented; however, the order of items within survey 
measures differed between the studies.  In the HOS, the form was in the standard SF-36 order 
(general health (GH1), health transition item (HTran), physical functioning PF (1-10), role 
limitations due to physical problems RP (1-4) with dichotomized yes/no choices, Role 
limitations due to emotional problems RE (1-3) with dichotomized yes/no choices, Social 
functioning (SF1), Bodily pain (BP1-2), Vitality VT (1-4), MH (1-5), Social Functioning (SF2), 
general Health (GH2-5), while the order in the VA form was slightly different (GH1, PF (1-10), 
RP (1-4)-5 pt choices, RE (1-3) -5pt choices , SF1, BP (1-2), VT (1-4), MH  (1-5), SF2, GH2-
GH5, physical transition item and emotional transition item).1 The reader is referred to appendix 
I and II for the exact wording of items, response choices and ordering of items. 

2.3.  Demographics 
  
 There were differences between the two studies in the source of various demographic 
variables. In the HOS, age, race and gender were obtained from administrative data and by self-
report (we used the administrative data in our analyses), and education by self-report. In the VA, 
age and gender were obtained from administrative data, and race and education were obtained by 
self-report. Because of some concerns about the number of VA respondents 99 years and older 
(perhaps because missing birth date was interpreted as 1/1/00), we truncated age at 98.  

2.4.  Comorbidities 
 The HOS and VA samples differed in the nature and extent of disease variables.  The HOS 
measure inquired whether a doctor had ever told the respondent they had any of 13 conditions, 
all medical.  The VA asked whether a doctor had ever told the respondent they had any of 15 
                                                           
1 Items on different pages of the form are separated by a slash, “/”. 
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conditions, including 3 mental health conditions (depression, PTSD, schizophrenia).  In addition, 
using the VA electronic patient record, administrative data on inpatient stays (over the previous 
10 years) and outpatient visits (over previous 3 years) were examined, ICD-9-CM codes were 
obtained, and combined to define 30 medical and 6 mental health conditions. 

3. Analytic Method 
 
 To compare the two versions of the SF-36 between HOS and VA, we used confirmatory 
factor analysis to test a sequence of hypothesized models, differing in the nature of constraints 
across groups.  Analyses were conducted separately for men and women, in each case comparing 
between the HOS and VA samples. 
 
 Below, we present some notation useful for describing our approach, as well as a 
conceptually oriented discussion of what we attempted to do to test equivalence using multiple-
group confirmatory factor analysis. The technical details of the estimation are then presented. 

3.1.  Conceptual issues and notation 
  
 The goal of factor analysis is to take a set of observed scores and construct a parsimonious 
model of the relations among these scores. This is done by proposing one or more latent 
constructs (i.e., factors) that account for the covariation among the observed scores. There are 
fewer latent constructs than observed variables, often many fewer. In the case of the SF-36, we 
propose 8 latent constructs based upon the prior history of use of this assessment to account for 
the covariation among the 35 scored items, the transition item(s) is not included in this analysis. 
 
 Many people are familiar with exploratory factor analysis, in which the data largely 
determine the model; in the case of confirmatory factor analysis, a model is proposed a priori (as 
a pattern of loadings of observed variables on latent factors) and the fit of the model to the data is 
tested using a chi-square statistic (large values indicate poor fit of the model to the data). 
 
 In the factor analysis model, a score on an observed item (x) is a function of one or more 
latent constructs, 

x = τ + Λ ξ + δ, 
where x is a px1 vector of observed variables, ξ a mx1 vector of latent constructs, τ a px1 vector 
of item intercepts, δ a px1 vector of residuals, and Λ a pxm matrix of factor loadings. That is, the 
score on observed variable x is modeled as in a regression model as a weighted function of latent 
variables ξ (where the weights are in matrix Λ), plus an intercept (τ) and a residual δ. As in 
regression, a one unit change in ξ leads to a change of Λ in x. 
 
 Some additional notation:   
 p =  number of items 
 m = number of latent variables 
 S = covariance matrix of observed variables 
 Σ = covariance matrix implied by the factor analytic model 
 Φ = var(ξ), covariance matrix of latent variables 
 Θ = Cov(δ), covariance matrix of residuals (generally diagonal), and 
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 μ = τ + Λ κ, where κ is mx1 vector of latent means (of the ξ) and μ is px1 vector of item 
means 
 
 The covariance matrix implied by the latent constructs can then be represented as a function 
of the latent variables, 

Σ = Λ Φ Λ' + Θ. 
Statistical tests are conducted by comparing the estimated covariance matrix Σ implied by the 
hypothesized model to the observed covariance matrix S, using one of several methods to 
estimate S such as generalized least squares or maximum likelihood. In the latter case, a measure 
(F) of discrepancy between Σ and S is calculated as log ||Σ|| + trace(SΣ-1) - log ||S|| - p, where  p = 
number of variables.  When multiplied by N-1, F is distributed as a chi-square with degrees of 
freedom equal to (p*(p+1)/2) – t, where t is the number of parameters estimated. This chi-square 
can be used to determine how well the covariance matrix Σ specified by the model fits the 
covariance matrix of the observed data S. 

3.2. Testing Degrees of Equivalence 
 
 To test the extent of equivalence in measurement properties of the SF-36 between the HOS 
and the VA, we tested a sequence of models representing varying degrees of equivalence. The 
sequence was based primarily on Vandenberg and Lance (2000; cf. also Steenkamp & 
Baumgartner, 1998). By comparing the fit of successive models, and computing the change in 
various fit measures, one can test whether a model with more equivalence constraints across 
groups significantly worsens the fit of the model to the data. Such a worsening of fit would 
indicate that the previous, less constrained model provides a better fit. 
 
 The comparison of successive models can be conducted when one model is 'nested' within 
another. A given model is nested within another model when the former can be derived from the 
latter by placing restrictions on parameters within the former (e.g., in the case of comparing 
degrees of equivalence, imposing a set of equality restrictions), without introducing new 
parameters to be estimated (Bentler & Bonett, 1980; Chenug & Rensvold, 2002). The new, more 
restricted model is nested in the more general (less restricted) model, and has fewer degrees of 
freedom.  The difference in chi-square between the two models can be computed, and when 
tested against the difference in degrees of freedom of the two models, indicates whether the 
imposition of additional restrictions resulted in a significant worsening of the fit of the model to 
the data. For example, when a model representing metric equivalence is compared to a model 
representing configural equivalence, and the difference in chi-square is significant at the 
difference in df, it indicates that the more restricted model (which imposes equality constraints 
on factor loadings across groups) significantly worsens the fit of the model to the data; thus one 
would reject the null hypothesis of no difference between the two models and conclude that 
configural rather than metric equivalence obtains in the data. 
 
 The tests can be divided into two groups, one testing measurement equivalence; the other 
structural equivalence (e.g., Cheung & Rensvold, 2002; Vandenberg & Lance, 2000). The former 
group is the prerequisite for conducting the latter, which are generally those of substantive 
interest. They are presented in order of increasing degree of equivalence. 
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Measurement Equivalence 
• configural equivalence -- same pattern of salient (i.e., non-zero) and fixed zero factor 

loadings across groups, but the corresponding loadings are not constrained to equality across 
groups.  If accepted, this hypothesis indicates that items define the same scales, but that the 
weights of items on scales can differ among groups. More simply, accepting this hypothesis 
implies that the various groups associate the same items with the same constructs. 

 
• metric equivalence – the values of corresponding non-zero factor loadings are constrained to 

be identical among groups. This hypothesis indicates that the weights of items on scales are 
identical across samples. (NB: in this study, because response choices differ for the RP and 
RE scales between HOS and VA studies, the various parameters for these two factors are 
NOT necessarily constrained to be identical in this or subsequent tests). Accepting the 
hypothesis of metric equivalence implies that the strength of the relationship between each 
item and its underlying construct is identical across groups. 

 
• scalar intercept equivalence -- item intercepts are identical, τi = τj. If accepted, this hypothesis 

indicates that differences in the means of observed variables are due to differences in the 
latent construct means, or that the items do not have different intercepts in the different 
groups. 

 
• equivalence of unique variances – residual item variances are identical, θi = θj. If this 

hypothesis is accepted, it indicates that unique variances are identical across groups (i.e., the 
items are equally reliable). 

 
 If the model of metric equivalence (at a minimum) is accepted, and if intercept equivalence is 
also accepted, then we can conclude that our measure (i.e., the SF-36) is invariant across 
samples. That is, the acceptance of metric and scalar equivalence are prerequisite to testing group 
differences in latent constructs represented by the SF-36 scales. (Note that, in the present 
situation, due to the differences in response choices between the HOS and the VA versions of the 
RP and RE scales, we do not expect to retain the hypothesis of intercept equivalence between 
samples for these scales.  However, it is possible that the hypothesis of partial intercept 
equivalence can be retained for the remaining 6 SF-36 scales). 
 
Structural Equivalence 
• equivalence of factor variances, φii = φjj. This hypothesis tests whether the variances of latent 

constructs are equal over groups. If accepted, it indicates that the variances of the latent 
constructs are identical. 

 
• equivalence of factor covariances, φij = φkl.  If accepted, this hypothesis, in combination with 

the previous, indicates that correlations among constructs are equal across groups. This is a 
very strong hypothesis, unlikely to be retained even among random samples from the same 
population (e.g., Meredith & Horn, 2001). 

 
• equivalence of factor means κi = κj. This hypothesis tests whether the latent construct means 

are equal across the groups. 
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 Note also within this sequence of tests, the model of partial measurement equivalence can 
also be a hypothesis of interest, e.g., that some but not all parameters are invariant across groups 
(Byrne et al., 1989; Steenkamp & Baumgartner, 1998). In the present case, given the differences 
in response formats for role items between the HOS SF36 and the Veterans SF36 (2 point vs. 5 
point, respectively), this might be an appropriate context for considering partial equivalence, i.e., 
that the remaining 6 factors are invariant, but the 2 role scales vary across groups. 
 
 The Table below indicates the sequence of tests as conducted in LISREL, where an “X” 
indicates that the matrix (or, in the case of partial equivalence, some of its parameters) is 
constrained between groups. 
 
 Factor Parameter Matrix Constrained * 
Model of 
equivalence 

Factor 
pattern 

(LX) 

Item 
intercepts 

(TX) 

Unique 
variances 

(TD) 

Factor variance-
covariance 

matrix (PH) 

Factor 
means 
(KA) 

Configural      
Metric X     
Scalar X X    
Unique X X X   
Factor variance X X X X (variances only)  
Factor covariance X X X X  
Factor mean X X X X X 
 

* Note. The abbreviation in parentheses refers to the matrix as specified in the LISREL program, e.g., LX is the 
LISREL abbreviation for the factor pattern matrix. 

3.3.  Estimation 
 We used the LISREL program (Joreskog & Sorbom, 1996), version 8.52, and conducted 
maximum likelihood estimation on covariance matrices.   

3.4.  Identification 
 Identification constraints are necessary for estimation of a confirmatory factor model in even 
a single group; a common set of constraints we adopted was to fix one arbitrarily selected 
loading on each factor to 1.0 to provide a scale for the factor.  Also, each item was permitted to 
load only one factor, that specified by the standard SF-36 scoring algorithm. For example, all 10 
PF items were allowed to load only the physical functioning factor; the loadings of these items 
on other factors were fixed at zero. 
 
In multiple group factor analysis, it is also necessary to impose constraints between groups, 
especially when means are included in the analysis. Thus, in one group(HOS), the vector of 
factor means, κ,  was set to 0; values in the other group (VA) are relative to this. 

3.5.  Model Fit 
 Because the chi-square test of fit is affected by sample size N (i.e., χ2 = (N-1)F, where F is 
the minimum fit function), and because the sample size was so exceptionally large in these 
analyses, we relied primarily on other goodness of fit indices which are (much) less sensitive to 
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sample size. Fit tests are used to decide on the adequacy with which a given model fits the data. 
Most agree that the chi-square test is not particularly useful in assessing model fit, and that other 
indices should be used.  
 
 Fit indices can be divided into two classes; absolute and incremental (Hu & Bentler, 1999).  
The former assess the adequacy with which the model reproduces the data; the latter how well a 
given model improves on a more restricted, nested baseline model. Absolute indices assess the 
degree of discrepancy between the covariance matrix implied by the model (Σ) and that observed 
from the data (S), and should be small, i.e., less than 0.08. Incremental indices are similar to 
variance explained measures such as R2 and should be larger than .95. 
 
 A good rule of thumb is to consider at least one index of each kind in evaluating the fit of a 
model to the data. Absolute indices include the root mean square error of approximation 
(RMSEA; Steiger & Lind, 1980) and standardized root mean squared residual (SRMR; Hu & 
Bentler, 1999); incremental indices include the comparative fit index (CFI; Bentler 1990), 
Tucker-Lewis (1973) index (TLI; also known as the non-normed fit index, NNFI).  Absolute fit 
indices should be small, indicating little discrepancy between the model and the data.  For 
RMSEA and SRMR, values less than 0.05 indicate good fit of the model to the data, and values 
between 0.05 and 0.08 acceptable fit. For incremental indices, large values are preferred, 
indicating that the given model accounts for much of the variation in the data.  Thus, values 
greater than 0.90 indicate reasonable fit, and values greater than 0.95 indicate excellent fit 
(Cheung & Rensvold, 2002; Hu & Bentler, 1999). Recently, Hu and Bentler (1999) proposed a 
two-index decision rule for assessing fit, based on a series of simulation studies. For maximum 
likelihood estimation, they recommend that the standardized root mean squared residual (SRMR) 
be less than 0.09, and either root mean squared error of approximation less than 0.06 or non-
normed fit index or comparative fit index 0.95 or larger. 
 
  In the context of assessing measurement equivalence, fit tests are also used to compare 
different models (if they are nested within each other), to determine whether a given model 
results in an improvement or a worsening of fit relative to a more or less constrained model.  In 
particular, the difference in χ2 between nested models (e.g., Δχ2

21 = χ2
2 - χ2

1) is itself distributed 
as a χ2. When tested against the difference in degrees of freedom (Δdf = df2 – df1) of two nested 
models, it can be used to determine whether the more constrained model improves or worsens 
the fit of the model to the data.  
 
 Because the differences in chi-square are affected by sample size, Cheung and Rensvold 
(2002) suggested an examination of the change in measures of fit other than χ2, such as CFI. 
Based on a simulation study involving 20 different fit indices, they recommend that a value of  
ΔCFI < -0.01 “indicates that the null hypothesis of equivalence should not be rejected” (p. 251). 
Widaman and Riese (1997) suggested considering the ratio of  Δχ2

 / Δdf to assess whether 
change in fit between models; if large, this indicates that  the given set of constraints leads to a 
relatively large increase in the amount of misfit per degree of freedom. In other words, the 
constraints being imposed are worsening the fit of the model, relative to the degrees of freedom. 
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4. Descriptive Findings 
 Here we describe some of the descriptive findings and comparisons between the HOS and 
VA data.  For reasons described above and elaborated below, all results are presented separately 
by gender within study, resulting in 4 groups (men and women in HOS, men and women in VA). 

4.1. Age Distribution 
 We first examined the age distribution within each sample (HOS, VA), stratified by gender 
(for reasons noted above).  Figure 1 (age distrib all.xls) presents the age distribution of the entire 
sample from each survey (including those under age 65).   
 
 In the HOS, men and women show similar distributions, with the peak around 67, and very 
low prevalence below age 65.  In the VA, men show a trimodal age distribution, with peaks 
around ages 51, 68, 75, representing cohorts of Vietnam, Korea, and WWII veterans, 
respectively.  Women in the VA show a bimodal distribution, with peaks at 44 and 78, 
representing Vietnam and WWII eras of service, respectively. Because of selection into the VA 
for health care services, age is intermingled with period of service.  Note that in the VA, some 
respondents were aged 18 to 64. 
 
 In Figure 2 (age distrib.xls), age distributions are shown for respondents > 65 years.  In the 
HOS, men and women show similar distribution, with peaks near 67, and long tails.  In the VA, 
men have peaks at 67 and 75; whereas for VA women, there is  a very large peak around age 77. 
All subsequent analyses are based only on respondents aged 65 and older. 

4.2. Demographics 
 
 Table 1 (demographics.xls) presents selected demographics by study.  Note, as mentioned 
above, that some of the demographic variables are based on respondent self-report, while others 
are obtained from administrative data. 
 
 For age (Table 1 and figure 3), the means are similar between studies; however, the 
standard deviation is larger in the HOS and the maximum age is about 6-10 years older (note that 
age was truncated at 98 in the VA as the validity of ages above 98 was questioned).  In each 
study, over 75% of respondents by gender were aged 65-79 (HOS 83.5% males, 79.4% females, 
VA 82.0% males, 77.0%, females respectively). 
  
 For race  (Figure 4), the VA includes more non-white men, and fewer Black women, than 
the HOS; a larger proportion of VA enrollees are missing race (4% vs. <1% for HOS).  Note that 
race was obtained from administrative data in the HOS, and by self-report in the VA. 
 
 For education (Figure 5), which was obtained by self-report in both studies, there was more 
missing data in the VA (10%) than in the HOS (2%).  There were more low educated men in the 
VA than in HOS (20% vs. 13% with <8 years) and somewhat fewer highly educated (31% vs. 
40% with > 12 yr).  Women in the HOS were less highly educated than were women in the VA, 
perhaps because large numbers of female VA enrollees were nurses. 
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4.3.  Comorbidities 
 
 Generally there were higher prevalence’s of self-reported conditions in the VA than in the 
HOS; the only exception was that depression was higher for women only in HOS than in VA 
(30% vs. 25%), see Figure 6. 

4.4.  SF-36 Item statistics 
 
 Table 2 (valid items.xls) presents the distribution of valid SF-36 items by group.  There was 
a higher percent of respondents omitting all 35 items in the VA (2.6%) than in the HOS (0.07%); 
a higher percent missing 1 to 3 items (0.4%-1% in VA, vs. 0.1% in HOS); and a lower percent 
with all 35 items complete (about 60% vs. 75%-80% for HOS).  In HOS, men were more likely 
to complete all items than were women (80% vs. 74%); in VA, the difference with all 35 items 
complete was lower than in HOS, but more similar between men (61%) and women (58%). 
 
 Figure 7 (means.xls; chart missing data items) presents, for each item, the percent of missing 
data separately for the 4 groups (men and women within each study).  In the VA, 10-12% of 
respondents by gender were missing responses on the GH1 and SF2 items, perhaps because of 
the layout of the SF-36 items in the VA survey (see above and appendices I and II).  In general, 
the rates of missing item responses were higher in the VA than in the HOS. 
 
 Among men in the VA, the most common missing data patterns were (a) omission of GH1 
(4.98% of all respondents), (b) omission of SF2 (3.07%), or (c) omission of all 35 items (2.68%).  
Remaining missing data patterns were each by less than 1% of respondents.   For women in the 
VA, these same three patterns were most common, accounting for 4.96%, 3.98%, and 2.63% of 
responses.  Among men in the HOS, only 1 pattern had more than 1% of respondents -- omitting 
20 items and answering only 10 PF + 5 GH (1.07%).  Among HOS women, only 1 pattern had 
more than 1% of respondents -- omitting item PF1 (1.37%). These results are important to 
consider in the development of future strategies for imputation methods.  
 
 Figure 8 (means.xls, chart means) plots item responses for the 4 groups.  The item mean 
profiles are generally similar among the 4 groups, with the exception due to the use of 5-point 
responses for role scales in the VA.  In general, item means for HOS respondents are higher than 
for VA (especially for PF). 
 
 Appendix III (Item distrib.xls) presents frequency distributions by study and gender for the 
SF-36 items.  Also shown are order of items in the survey and the percent missing data. 

5.  Measurement Equivalence 
 We tested, separately for men and women, measurement equivalence between HOS and VA..  
In these analyses, we computed 4 covariance matrices (men and women, each for VA and HOS 
Cohort 1), on persons aged 65 and older (Appendix IV).  Listwise deletion was used (i.e., cases 
with any of the 35 SF-36 items missing were deleted).  Scores on some items were reversed, so 
that all are in the same direction, with higher scores indicating better health. 
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 Table 3 shows the sample sizes, by study and gender, for those with complete data on the 
SF-36, the total sample, and the percent of those from the total sample with complete data. Note 
that the percent of women with complete data is lower than that of men, and that more 
respondents in the HOS had complete data than in the VA, but that, overall, more women than 
men had complete data (72.6% vs. 63.7%). 
 
Table 3. Sample Size by Study and Gender 
 

 Complete SF-36 data Total Sample % with complete data 
 Men Women Men Women Men Women
HOS Cohort 1 56,799 70,746 70,610 95,494 80.4 74.1
VA 272,171 5,398 445,816 9,329 61.0 57.9

Total 328,970 76,144 516,426 104,823 63.7 72.6
 
 As previously noted, these very large sample sizes pose a problem with respect to assessing 
the fit of models to data, given their excess power to reject the null hypothesis of good fit of the 
model to the data.  That is, since chi-square is defined as (N-1)*F, where F is a goodness of fit 
function, the very large sample sizes will greatly inflate the value.  Thus, it was important to rely 
on fit indices other than chi-square to decide whether or not to accept a given model as 
adequately fitting the data. 
 
 To the best of our knowledge, the largest sample size in a published study of health outcomes 
was studied by Marshall et al. (2001), who had a sample of approximately 15,000 persons who 
completed the CAHPS.  However, in this study, the cohort was divided into 4 groups ranging in 
size from 609 to 7983. In simulation studies of factor analysis (e.g., Hu & Bentler, 1999), the 
largest sample size considered was 5000. Our analysis for men, with over 300,000 respondents 
having complete data, is by far the largest sample ever subjected to factor analysis in any 
domain, to our knowledge. 
 
 The initial model of configural equivalence was obtained by specifying that each item of the 
SF-36 loaded on only one scale, according to standard scoring algorithms (Ware et al., 1993; 
Kazis et al., 1998). That is, all 10 PF items loaded on the physical functioning factor, the 4 RP 
items on the role physical factor, etc. For each factor, the loading for one item was fixed at 1.0, 
to provide a scale for the factor. The items were PF2 (limited in moderate activities), RP1 (cut 
down on amount of time), BP1 (amount of pain), GH1 (is your health excellent, very good, etc.), 
VT2 (have a lot of energy), SF2 (how much of the time did health interfere with social 
activities), RE1 (cut down on amount of time), and MH5 (have you been happy).  Unique 
variances, item intercepts, and factor variances and covariances were freely estimated.  Example 
LISREL scripts for specifying models of configural equivalence and of intercept equivalence are 
given in Appendix V2. 
 
 We did not consider alternative hypotheses about numbers of factors or loadings on items on 
different factors, nor did we attempt to improve the fit of the initial model of configural 
equivalence to the data by allowing items to load on more than one factor (or, for that matter, on 
                                                           
2 To adapt these programs for women, changes would need to be made in the titles, the NO= parameter on the DA 
line, and in the file name on the 3 lines describing the input data, for both HOS and VA portions of the programs. 
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a different factor than specified by the standard scoring algorithm). Prior work has provided a 
strong foundation for this a priori model (Keller et al., 1998; Ware et al., 1993). 
 
 Successive models of increasing equivalence between groups were then tested, following the 
sequence specified in Section 3.2 above.  For each model considered (detailed results are shown 
in Appendix VI), various measures of fit are shown in Table 4, first for men and then for 
women. Chi-square and df are presented; no p values are given because all are highly significant, 
indicating that the various models do not fit the data well according to this very powerful test. 
The minimum fit function (F) is provided, followed by two measures of absolute fit (RMSEA, 
SRMR) and two measures of relative fit (CFI, NNFI).  
 
 Because, as noted above, the chi-square is influenced by sample size (i.e., chi-square = (N-
1)*F), we rely on the other indices to determine the adequacy of the fit of the models to the data. 
We consider the values of these indices in relation to the cutoffs recommended by Hu and 
Bentler (1999), who suggest minimum values near 0.95 for incremental fit indices, and for the 
absolute indices, cutoffs of 0.08 for SRMR and 0.06 for RMSEA. We also considered the change 
in chi-square relative to the change in df (Δχ2

 / Δdf) as advocated by Widaman and Reise (1997). 
 
 We discuss, in some detail, the fit of the configural equivalence model for men (shown in the 
first row of Table 4); the description applies to the remaining models and to those for women, 
shown in the lower half of Table 4.  We then discuss the differences between successive models 
of increasingly stricter equivalence, presented in Table 5.  
  
 For men, the fit of Model 1 (Table 4a, row 1), specifying configural equivalence, was highly 
significant, with a chi-square of 860,283.405 on 1064 degrees of freedom. The minimum of the 
fit function is 2.615, and, as noted above, is multiplied by N-1 to obtain the chi-square.  The 
absolute fit indices convey somewhat different results regarding the adequacy with which the 
model fits the data; the RMSEA of .0789 is larger than the cutoff of 0.06 recommended by Hu 
and Bentler (1999).  (Note that others, e.g., Steiger & Lind, 1980 recommend a cutoff of 0.08). 
However, the SRMR of .0433 is lower than the 0.08 cutoff. Further, the two indices of 
incremental fit, CFI and NNFI, both exceed the recommended cutoff of 0.95. Based on these 
results, our conclusion is that the configural equivalence model provides a reasonably good fit to 
the data, suggesting that for men the same items are related to the same factors in both HOS and 
VA.  A similar finding holds for women (Table 4b, row 1). 
 
 In subsequent rows of Table 4, tests are shown for different models of equivalence.  After 
considering configural equivalence, we tested (Model 2) partial metric equivalence, forcing 
equality constraints on factor loadings for all items except RP and RE (because of the different 
response scales used for these items in the HOS and VA).   Subsequent models in Table 4 add 
additional equivalence constraints to the model of partial metric equivalence; in these subsequent 
models, equality constraints were not imposed on RP and RE items. 
 
 The next model examined, Model 3, of partial intercept equivalence, constrained intercepts 
across HOS and VA for all items except RP and RE. The fit of this model to the data was within 
the recommended cutoffs for all 4 fit indices.  
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 Model 4, which specifies partial equality of unique variances across samples, provides an 
adequate fit to the data for both men and women.  The remaining models, 5-7, test various 
aspects of structural rather than measurement equivalence (as defined in Section 3.2 above). In 
model 7, we estimated factor means, and allowed them to differ between HOS and VA samples 
on 6 of 8 factors (all but RP and RE). This model used fewer degrees of freedom than Model 6; 
thus in the comparisons of model given in Table 5, the test is whether relaxing the equivalence 
constraints for the 6 factor means results in an improvement in fit. 
 

Table 4.  Fit of Equivalence Models across HOS Cohort 1 and VA by Gender 
 
 4a. MEN Absolute Fit Relative Fit 
Model of equivalence Chi-square df min F RMSEA SRMR CFI NNFI
1. Configural  860,283.405 1064 2.615 0.0789 0.0433 0.982 0.980
2. Partial metric  868,338.265 1086 2.640 0.0786 0.0449 0.982 0.980
3. Partial intercept 904,137.142 1114 2.748 0.0788 0.0453 0.981 0.979
4. Partial unique variance 936,731.281 1142 2.847 0.0790 0.0457 0.980 0.979
5. Partial factor variance 942,617.650 1148 2.865 0.0793 0.0476 0.980 0.979
6. Partial factor covariance 946,726.677 1163 2.878 0.0789 0.0468 0.980 0.979
7. Partial factor mean 917,990.812 1157 2.791 0.0780 0.0540 0.980 0.981
 
4b. WOMEN Absolute Fit Relative Fit 
Model of equivalence Chi-square df Min F RMSEA SRMR CFI NNFI
1. Configural  175,170.039 1064 2.301 0.0728 0.0425 0.980 0.978
2. Partial metric  175,798.056 1086 2.309 0.0722 0.0571 0.980 0.978
3. Partial intercept 177,511.311 1114 2.331 0.0715 0.0528 0.980 0.979
4. Partial unique variance 178,511.451 1142 2.344 0.0708 0.0566 0.980 0.979
5. Partial factor variance 179,058.147 1148 2.352 0.0709 0.1790 0.980 0.979
6. Partial factor covariance 179,437.066 1163 2.357 0.0705 0.1600 0.980 0.979
7. Partial factor mean 177,942.662 1157 2.337 0.0704 0.0936 0.980 0.979
 

Note.  Fit = minimum fit function; RMSEA = root mean squared error of approximation; 
SRMR = standardized root mean squared residual; CFI = comparative fit index; NNFI = 
non-normed fit index. 

 
 There are some interesting differences in fit of corresponding models to data between men 
and women, in part because the women’s sample is about 25% the size of the men’s sample.  
Thus, the chi-square values are lower.   In addition, note that the minimum value of the fit 
function is generally smaller for women (about 2.3) vs. that for men, about 2.6 to 2.8.  This 
larger value for men, combined with the much larger sample size, leads to substantially larger 
chi-square values for men.  The measures of absolute fit, RMSEA and SRMR, are generally 
smaller for women (with the exception of SRMR for Models 5 and 6, testing equality of factor 
variances and covariances, respectively). The relative fit indices, CFI and NNFI, were quite 
similar between men and women. Overall, all values of RMSEA were larger than the 0.06 cutoff 
recommended by Hu and Bentler (1999), although the values of SRMR were all smaller than the 
cutoff of 0.08 (except for Models 5 and 6 for women).  Values of both indices of confirmatory fit 
exceeded the 0.95 minimum recommended by Hu and Bentler (1999). 
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 Examining the fit of the equivalence models in Table 4 is revealing, but the key results are 
those in Table 5, which compare the fit of successive pairs of models, to determine at what point 
in the model-fitting sequence the imposition of equality constraints across HOS and VA samples 
worsens the fit of the model to the data. As noted above, a key statistic for evaluating the impact 
of imposing additional equality constraints across samples is the change in chi-square.  However, 
as also noted above, the chi-square values are influenced by sample size, and in the present case, 
sample sizes are quite large. Thus, it becomes important to consider changes in other measures of 
fit, such as those shown in Table 5.  
 
 In considering the results of model comparisons shown in Table 5, we adopted the following 
strategy. First, we examined the difference in chi-square between successive models, which is 
itself a chi-square, and can be tested against the difference in degrees of freedom. When this is 
significant, it indicates that including additional equality constraints across HOS and VA 
samples worsened the fit of the model to the data.  Note that, because chi-square is itself 
influenced by sample size, which in the present case, was quite large, these changes in chi-square 
are also affected by sample size. Thus, we also considered changes in other measures of fit  
between successive models, to determine at what point in the sequence of tests they indicate a 
worsening in fit.  

Table 5.  Differences in Fit of Successive Models of Measurement Equivalence, by Gender 
5a. MEN 
Models Compared Δ χ 2 Δ df Δχ 2/ Δ df Δ RMSEA ΔSRMR ΔCFI ΔNNFI

21. Partial metric vs. 
configural  

8,054.86 22 366.130 -0.0003 0.0016 0.0000 0.0000

32. Partial intercept vs. 
partial metric 

35,798.88 28 1,278.531 0.0002 0.0004 -0.0010 -0.0010

43. Unique vs. 
intercept 

32,594.14 28 1,164.076 0.0002 0.0004 -0.0010 0.0000

54. Factor variance vs. 
unique 

5,886.37 6 981.062 0.0003 0.0019 0.0000 0.0000

65. Factor covariance 
vs. factor variance 

4,109.03 15 273.935 -0.0004 -0.0008 0.0000 0.0000

76. Factor means vs. 
factor covariance 

28,735.86 6 4,789.311 0.0009 -0.0072 0.0000 -0.0020

 
5b. WOMEN 
Models Compared Δ χ 2 Δ df Δχ 2/ Δ df Δ RMSEA ΔSRMR ΔCFI ΔNNFI

21. Partial metric vs. 
configural  

628.02 22 28.55 -0.0006 0.0146 0.0000 0.0000

32. Partial intercept vs. 
partial metric 

1,713.25 28 61.19 -0.0007 -0.0043 0.0000 0.0010

43. Unique vs. 
intercept 

1,000.14 28 35.72 -0.0007 0.0038 0.0000 0.0000

54. Factor variance vs. 
unique 

546.70 6 91.12 0.0001 0.1224 0.0000 0.0000

65. Factor covariance 
vs. factor variance 

378.92 15 25.26 -0.0004 -0.0190 0.0000 0.0000

76. Factor means vs. 1,494.40 6 249.07 -0.0001 -0.0664 0.0000 0.0000
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factor covariance 
 
 For men, the first row of Table 5 (comparison 21) suggests that the fit of Model 2, partial 
metric equivalence, is not much worse than that of Model 1, configural equivalence. Although 
the Δχ2 suggests a worsening of fit, the influence of sample size is less in the other indices, all of 
which suggest a relatively small impact of imposing equality constraints on factor loadings for 6 
of 8 factors (omitting RP and RE) across HOS and VA. Importantly, the Δχ2 / Δdf ratio is 
relatively small.  
 
 The next comparison, 32, tested the impact of imposing equality constraints on intercepts 
(for 28 of 35 items, omitting 4 for RP and 3 for RE). The change in chi-square was very large, 
over 35,000, and the Δχ2 / Δdf ratio was quite large (> 1200), suggesting that this set of 
constraints worsened the fit of the model to the data.  The model adding equivalence of unique 
variances (Model 4) also showed a notable worsening of fit, compared to Model 3 (Comparison 
43).  Compared to the model including equivalence of unique intercepts, the model constraining 
factor variance across samples (Model 5) was only somewhat worse (Comparison 54); the model 
adding equality constraints on factor covariances was only slightly worse.  Finally, Model 7, 
which allowed factor means to vary between sample (except for RP and RE) was a significant 
improvement (Comparison 76).  However, because Model 3 was significantly worse than Model 
2, we selected Model 2 as providing the best fit to the data for men. 
 
 Based on these results, we conclude that the best-fitting model for the men is Model 2, 
which imposed equality constraints on items for 6 of 8 factors (all except RP and RE, due to 
differences in response formats).  In other words, factor loadings for 6 of 8 factors are 
equivalent between men in Medicare HMO’s who completed the HOS version of the SF-36 and 
men receiving VA care who completed the Veterans SF-36. Other parameter matrices (e.g., 
intercepts, unique variances, factor covariances, factor means) were not equivalent across HOS 
and men. 
 

For women, the results also suggest that the model of partial metric equivalence provides 
the best fit to the data; the improvement of this model over the configural equivalence model was 
reasonable (Comparison 21).  The partial intercept equivalence model did not result in much 
improvement (Comparison 32), nor did the unique equivalence model (Comparison 43). The 
model of invariant factor variances was not notably worse than that of unique equivalence 
(Comparison 54), and the model adding equivalence of factor covariances also seemed to 
provide a reasonable fit (Comparison 65). The model allowing differences in 6 of 8 factor means 
(all but RP and RE) was a significant improvement. However, given that Model 3 provided a 
worse fit than Model 2, Model 2 was accepted as providing the best fit to the data. 
 
 Given the acceptance of Model 2, partial metric equivalence between HOS and VA, for 
both men and women, we conducted a second set of equivalence analyses. In these, we forced 
equivalence of all parameters between HOS and VA, including the RP and RE items. Table 6 
presents results for several models, separately for men and for women. As the starting point, the 
model of configural equivalence described above is given; the tests of differences in models 
(Table 7) use this configural equivalence model as a baseline. 
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Table 6.  Fit of Full Equivalence Models across HOS Cohort 1 and VA by Gender 
 
6a. MEN Absolute Fit Relative Fit 
Model of equivalence Chi-square df min F RMSEA SRMR CFI NNFI
1. Configural  860,283.40 1064 2.615 0.0789 0.0433 0.982 0.980
2a. Full metric  870,395.56 1091 2.646 0.0786 0.0450 0.982 0.980
3a. Full intercept 1,138,138.36 1126 3.460 0.0806 0.0460 0.976 0.974
 
6b. WOMEN Absolute Fit Relative Fit 
Model of equivalence Chi-square df min F RMSEA SRMR CFI NNFI
1. Configural  175,170.04 1064 2.301 0.0728 0.0425 0.980 0.978
2a. Full metric  175,941.52 1091 2.311 0.0721 0.0585 0.980 0.978
3a. Full intercept 194,317.96 1126 2.552 0.0727 0.0559 0.978 0.977
 
 For men (Table 6a), Model 2a specified that all  factor loadings (including RP and RE 
items) were equivalent between groups; the fit of this model to the data was acceptable. Model 
3a, which added the set of constraints specifying equivalence of item intercepts across HOS and 
VA, did not fit the data well; the chi-square was very large, as was the minimum fit function.  
Similarly, for women (Table 6b), the full metric model fit reasonably well. The model of full 
intercept invariance did not provide a good fit to the data. 
 
 Turning to Table 7, we conducted difference tests between these three models for men 
and for women.  For men (Table 7a),  the model of full metric equivalence l was not much worse 
than that of configural invariance (Comparison 2a-1). A comparison of the models of full and 
partial metric equivalence (Comparison 2a-2) also did not suggest a worsening of fit for the 
model of full metric equivalence; however, the model of full intercept equivalence was notably 
worse than that of full metric equivalence (Comparison 3a-2a).  Thus, Model 2a was accepted as 
providing the best fit to the data for men, and no further model comparisons were conducted. 
 

For women (Table 7b),  the model of full metric equivalence model was not much worse 
than that of configural invariance (Comparison 2a-1). A comparison of the models of full and 
partial metric equivalence (Comparison 2a-2) also did not suggest a worsening of fit for the 
model of full metric equivalence. The model of full intercept equivalence was notably worse 
than that of full metric equivalence (Comparison 3a-2a); thus, Model 2a was accepted as 
providing the best fit to the data for women, and no further model comparisons were conducted. 
 
Table 7.  Differences in Fit of Successive Models of Full Measurement Equivalence, by Gender 

 
7a. MEN 

Models Compared Δ χ 2 Δ df Δχ 2/ Δ df Δ RMSEA ΔSRMR ΔCFI ΔNNFI
2a 1. Full metric vs. 
configural  

10,112.15 27 374.52 -0.0003 0.0017 0.0000 0.0000

2a 2. Full metric vs. 
partial metric 

2,057.29 5 411.46 0.0000 0.0001 0.0000 0.0000

3a 2a. Full intercept vs. 
full metric 

267,742.80 35 7,649.79 0.0020 0.0010 -0.0060 -0.0060
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7b. WOMEN 
Models Compared Δ χ 2 Δ df Δχ 2/ Δ df Δ RMSEA ΔSRMR ΔCFI ΔNNFI
2a 1. Full metric vs. 
configural  

771.48 27 28.57 -0.0007 0.0160 0.0000 0.0000

2a 2. Full metric vs. 
partial metric 

143.46 5 28.69 -0.0001 0.0014 0.0000 0.0000

3a 2a. Full intercept vs. 
full metric 

18,376.44 35 525.04 0.0006 -0.0026 -0.0020 -0.0010

 
 The final models accepted for men and women, of full metric equivalence, are presented in 
Tables 8 and 9, respectively.  Factor loadings that were fixed at 1.0 to provide a scale for the 
factor are shown in bold; entries for RP and RE are in italics, to distinguish these items which 
used different response formats in the two studies.  Factor variances are given in bold; factor 
covariances are below the main diagonal and factor correlations are above. 
 
 In sum, the results of the equivalence analyses indicate that the factor structure of the SF-36 
was equivalent between the HOS and VA samples, for both men and women. Despite differences 
in the response formats of the RP and RE items between the samples, the contributions of each 
item to its hypothesized scale was identical in both samples. Other components of the factor 
analysis model, such as item intercepts, factor covariances, and unique variances, were not 
identical between samples.  However, given that the minimum requirement of metric equivalence 
was met, these results imply that meaningful comparisons can be conducted between HOS and 
VA samples using the SF-36 scales. 
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Table 8.  Full Metric Equivalence Model, MEN 
 
   Unique Variances Item Intercepts 
Item 
Label 

Item 
Description 

Factor 
Loadings HOS VA HOS V A

PF1 Vigorous 0.577 0.364 0.256 1.721 1.401
PF2 Moderate 1.000 0.168 0.182 2.400 1.952
PF3 Lift/carry 0.941 0.145 0.201 2.577 2.173
PF4 Climb several 0.985 0.216 0.197 2.212 1.739
PF5 climb one 0.990 0.122 0.168 2.573 2.190
PF6 bend/kneel 0.852 0.257 0.254 2.249 1.858
PF7 Walk mile 1.031 0.255 0.225 2.177 1.723
PF8 Walk several 1.134 0.154 0.169 2.412 1.906
PF9 Walk one 0.949 0.129 0.203 2.653 2.322

PF10 bathe/dress 0.585 0.153 0.278 2.805 2.568
RP1 limited 1.000 0.079 0.351 1.707 3.079
RP2 do less 1.010 0.076 0.285 1.575 2.826
RP3 kind 1.048 0.059 0.225 1.598 2.810
RP4 difficulty 1.060 0.060 0.214 1.606 2.800
BP1 amount 1.000 0.643 0.528 4.285 3.531
BP2 interfere 1.086 0.059 0.095 4.018 3.226
GH1 general 1.000 0.329 0.283 3.148 2.434
GH2 sick easier 0.879 0.579 0.842 4.276 3.764
GH3 healthy as 1.282 0.674 0.648 3.542 2.773
GH4 health worsen 0.840 0.953 0.952 3.393 2.892
GH5 health excellent 1.418 0.423 0.446 3.365 2.469
VT1 pep 0.973 0.631 0.505 3.554 2.794
VT2 energy 1.000 0.579 0.519 3.606 2.772
VT3 worn out 0.842 0.629 0.979 4.510 3.784
VT4 tired 0.820 0.539 0.836 4.129 3.456
SF1 extent interfere 1.107 0.292 0.357 4.257 3.470
SF2 time interfere 1.000 0.327 0.441 4.288 3.589
RE1 limited 1.000 0.030 0.232 1.829 3.650
RE2 do less 1.044 0.058 0.219 1.748 3.413
RE3 not careful 0.957 0.052 0.379 1.823 3.635
MH1 nervous 1.079 0.714 1.011 5.166 4.583
MH2 down in dumps 1.155 0.335 0.496 5.483 4.969
`MH3 calm/peaceful 1.125 1.019 0.972 4.343 3.748
MH4 downhearted 1.117 0.396 0.560 5.261 4.755
MH5 happy 1.000 0.857 0.968 4.581 4.137
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Table 8 (continued):  Factor Covariances (and correlations, above diagonal), Men 
 
FULL Metric invariance  
HOS  PF RP BP GH VT SF RE MH
 PF 0.343 0.692 0.631 0.712 0.692 0.700 0.488 0.471
 RP 0.160 0.156 0.698 0.688 0.712 0.740 0.616 0.474
 BP 0.367 0.274 0.987 0.642 0.661 0.723 0.502 0.509
 GH 0.310 0.202 0.474 0.552 0.832 0.738 0.528 0.609
 VT 0.468 0.325 0.758 0.714 1.334 0.755 0.545 0.668
 SF 0.352 0.251 0.617 0.471 0.749 0.738 0.694 0.739
 RE 0.094 0.080 0.164 0.129 0.207 0.196 0.108 0.664
 MH 0.196 0.133 0.359 0.321 0.548 0.451 0.155 0.504
    
VA   PF RP BP GH VT SF RE MH
 PF 0.421 0.777 0.661 0.736 0.715 0.708 0.574 0.481
 RP 0.606 1.446 0.723 0.764 0.775 0.780 0.701 0.526
 BP 0.489 0.991 1.301 0.685 0.689 0.762 0.621 0.573
 GH 0.389 0.749 0.637 0.664 0.845 0.776 0.623 0.627
 VT 0.591 1.187 1.001 0.877 1.623 0.776 0.630 0.670
 SF 0.504 1.029 0.954 0.694 1.085 1.204 0.776 0.768
 RE 0.483 1.093 0.919 0.659 1.041 1.104 1.683 0.711
 MH 0.296 0.600 0.620 0.485 0.810 0.800 0.876 0.901
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Table 9.  Full Metric Equivalence Model, WOMEN 
 
   Unique Variances Item Intercepts 
Item 
Label 

Item 
Description 

Factor 
Loadings HOS VA HOS V A

PF1 Vigorous 0.643 0.326 0.233 1.607 1.351
PF2 Moderate 1.000 0.198 0.191 2.221 1.917
PF3 Lift/carry 0.940 0.187 0.209 2.367 2.107
PF4 Climb several 1.014 0.219 0.194 2.010 1.688
PF5 climb one 0.976 0.158 0.180 2.416 2.175
PF6 bend/kneel 0.886 0.251 0.244 2.129 1.890
PF7 Walk mile 1.072 0.252 0.223 1.990 1.676
PF8 Walk several 1.144 0.179 0.182 2.239 1.952
PF9 Walk one 0.903 0.172 0.213 2.544 2.336

PF10 bathe/dress 0.462 0.191 0.248 2.770 2.656
RP1 limited 1.000 0.084 0.347 1.670 3.322
RP2 do less 1.095 0.082 0.306 1.515 2.979
RP3 kind 1.150 0.061 0.210 1.562 3.031
RP4 difficulty 1.152 0.060 0.195 1.571 3.046
BP1 amount 1.000 0.608 0.519 4.042 3.565
BP2 interfere 1.042 0.098 0.101 3.833 3.345
GH1 general 1.000 0.303 0.272 3.074 2.699
GH2 sick easier 0.790 0.649 0.783 4.210 4.039
GH3 healthy as 1.127 0.691 0.724 3.593 3.207
GH4 health worsen 0.767 0.908 0.987 3.503 3.204
GH5 health excellent 1.401 0.441 0.475 3.292 2.710
VT1 pep 0.934 0.573 0.441 3.438 2.966
VT2 energy 1.000 0.577 0.461 3.436 2.872
VT3 worn out 0.774 0.733 0.928 4.371 3.999
VT4 tired 0.772 0.634 0.786 3.967 3.574
SF1 extent interfere 1.049 0.314 0.308 4.155 3.623
SF2 time interfere 1.000 0.341 0.406 4.169 3.717
RE1 limited 1.000 0.044 0.210 1.795 3.969
RE2 do less 1.111 0.060 0.222 1.703 3.706
RE3 not careful 0.962 0.057 0.301 1.789 3.937
MH1 nervous 1.055 0.831 0.793 4.934 4.870
MH2 down in dumps 1.083 0.402 0.412 5.396 5.246
`MH3 calm/peaceful 1.172 0.933 0.910 4.157 3.900
MH4 downhearted 1.120 0.455 0.485 5.084 4.926
MH5 happy 1.000 0.836 0.854 4.523 4.347
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Table 9 (continued):  Factor Covariances (and correlations, above diagonal), Women 
 
Full metric invariance        
HOS  PF RP BP GH VT SF RE MH
 PF 0.400 0.712 0.673 0.723 0.711 0.678 0.440 0.430
 RP 0.168 0.139 0.732 0.684 0.721 0.736 0.591 0.457
 BP 0.463 0.297 1.184 0.686 0.696 0.739 0.496 0.486
 GH 0.355 0.198 0.580 0.603 0.814 0.742 0.515 0.603
 VT 0.550 0.329 0.927 0.773 1.497 0.767 0.543 0.665
 SF 0.408 0.261 0.765 0.548 0.892 0.904 0.671 0.719
 RE 0.096 0.076 0.186 0.138 0.229 0.220 0.119 0.673
 MH 0.211 0.132 0.410 0.363 0.631 0.530 0.180 0.601
          
    PF RP BP GH VT SF RE MH
VA PF 0.414 0.784 0.687 0.743 0.702 0.678 0.483 0.380
 RP 0.547 1.176 0.739 0.762 0.765 0.782 0.629 0.456
 BP 0.514 0.932 1.353 0.683 0.674 0.741 0.552 0.466
 GH 0.395 0.682 0.656 0.682 0.805 0.761 0.574 0.552
 VT 0.590 1.084 1.025 0.869 1.708 0.772 0.595 0.610
 SF 0.489 0.950 0.966 0.704 1.130 1.256 0.726 0.677
 RE 0.356 0.781 0.735 0.543 0.891 0.931 1.311 0.703
 MH 0.208 0.421 0.462 0.388 0.679 0.646 0.685 0.725
 

6. Discussion and Future Plans 
 There are a number of avenues of further exploration that could be pursued with these 
data.  
• It would be of interest to determine whether the SF-36 is equivalent across successive HOS 

cohorts. Given that the samples are drawn from the population of Medicare HMO users 
(which is a dynamic population), one might expect a greater extent of equivalence than was 
observed in the present case between HOS and VA 

• Examination of equivalence of SF-36 across men and women might be of interest, certainly 
within the two studies. However, attempts to compare men and women across HOS and VA 
are likely to indicate a great many differences, given the very different age/gender 
distributions, and the relatively unique nature of women who use VA healthcare. 

• An additional question is whether or not the SF-36 is equivalent by age-group; thus, one 
could stratify the analyses by age group, e.g., 65-74, 75-84, 85+ 

• The matrices in the present study were based on cases with complete data (i.e., listwise 
deletion).  However, a number of methods are available for taking missing data into account, 
e.g., multiple imputation or full-information maximum likelihood.  

• Is the SF-36 equivalent in the HOS across mode of administration (mail vs. phone)? 
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8. Acronyms 
 
BP Bodily pain (SF-36 subscale) 
CFI Confirmatory fit index 
CHF Chronic heart failure 
CLD Chronic lung disease  
COPD Chronic obstructive pulmonary disease 
df degrees of freedom  
GH General health (SF-36 subscale) 
HOS Health Outcomes Survey (formerly, Health of Seniors) 
ICD9CM International Classification of Diseases, Version 9, Clinical Modification 
MH Mental health (SF-36 subscale) 
MI Myocardial infarction 
MOS Medical Outcomes Study 
NNFI Non-normed fit index (aka TLI) 
NSVH National Survey of Veterans Health 
PF Physical functioning (SF-36 subscale) 
PTSD Post-traumatic stress disorder 
RE Role limitations due to emotional functioning (SF-36 subscale) 
RMSEA Root mean squared error of approximation 
RP Role limitations due to physical functioning (SF-36 subscale) 
SF Social functioning (SF-36 subscale) 
SRMR Standardized root mean squared residual 
TLI Tucker-Lewis index (aka NNFI) 
VA US Department of Veterans Affairs 
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